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An archaeological material that we wish to analyse through formalised methods has to be described 

prior to analysis in a standardised, formalised way. We describe units in terms of variables. The 

units may be proper physical objects like pots, swords, axes, brooches, etc. or it may be 

assemblages of physical objects like graves, hoards, pits, or indeed any kind of excavation contexts. 

All these kinds of units Can also be termed objects. The variables can be any abstracted quality 

from the units like measurements, discrete descriptive elements or types of objects. 

Our formalised description is an abstraction from the archaeological material background. We 

analyse this abstraction in order to isolate meaningful structure that will provide us with means to 

understand and interpret the material background. There are many ways in which we may do 

formalised analyses of our description. Some are uni-variate in the sense that they focus on one 

variable at a time. Others are bi-variate, analysing variables pair wise. A third group is multivariate, 

analysing three or more variables together. This paper deals with three multivariate methods – 

Principal Components Analysis (PCA), Correspondence Analysis (CA) and Metric Scaling (MS). 

Apart from introducing and discussing the three types, a number of examples will be presented. The 

data for these can be found in the file Examples.xls. 

The central computational model for all three methods is the same. It is based on what is called 

a singular value decomposition of a matrix. The differences between the methods are based on the 

pre-treatment of the input data, as each method is aimed at data with particular statistical qualities. 

 

Principal components analysis 

The PCA method is designed to isolate patterns of covariance in a set of measurement variables, i.e. 

we expect the state of variables to be dependent on each other in some way. The state of one 

variable for an object has implications for the state of other variables for the same object. Our data 

could be a number of pots described by rim diameter, base diameter, shoulder diameter, total 

heights, etc. If we know the rim diameter of a pot we also know something about most other 

measurements of the pot. As a minimum, and quite trivial, the effect of general size will make most 

if not all measurements of big pots larger than those of small pots, but beyond size we may find 

more interesting patterns of covariance between the measurements. 

Crucial to PCA is the basis on which the variables are compared. This is determined trough a 

matrix of coefficients expressing the degree of covariance pair wise between all variables. There are 

two types of coefficients that may be used here. One is the covariance coefficient, and the other the 

correlation coefficient (Persons r). The result will normally differ between the two, and it is 

therefore necessary to understand the difference between them in order to decide when to choose 

the one or the other. 

 

Correspondence analysis 

Another typical set of data in archaeology is objects described by counts (including 

presence/absence) of some characteristic elements of the objects. It could be graves described in 

terms of their content of artefact types like different types of hair pins, brooches, belt buckles, 

weaponry, pottery, everyday utensils, etc. If in a grave, we find a typical female ornament like a 

hairpin it is quite likely that the same grave may contain another female ornament like a brooch, but 

quite unlikely that it will also contain a sword. In contrast if a grave contains a sword it is highly 

unlikely that it will also contain a hairpin or a brooch, but quite likely that it will contain a belt 

buckle. Covariance in type inventories due to sex is one of the most common structuring elements 

in graves. But there are certainly others like social ranking, and indeed chronological changes. 
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Correspondence Analysis (CA) is a method designed to isolate patterns of covariance in a table of 

incident variables (presence/absence or counts) recorded for a number of objects. Such tables are 

also known as contingency tables.  

In order to investigate this type of data, correlation coefficients as used in PCA are of no use. 

The data are far from normally distributed. On the contrary they are heavily skewed to the left (i.e. 

towards small values) more or less following the Chi-Square distribution, and the Chi-Square 

statistic, ideally suited to deal with contingency tables, is in fact used in CA. The staring point of a 

CA is a table where each cell is computed as: 

 

 

 

 

 

 

For each cell the observed value minus the expected value is divided by the squarer root of the 

expected value. Expected values are derived from the row and column sums of the table of observed 

values under the assumption of a random non-structured distribution of values across rows and 

columns. 

 

Metric scaling 

 

Scaling methods use similarity coefficients (or distance coefficients) as their starting point. A 

similarity coefficient is a numerical value that expresses the similarity between two objects. Mostly, 

similarity coefficients are structured in such a way that they attain the value of 1 if the objects are 

identical and the value of 0 if the objects have nothing in common. (Distance coefficients are in 

principle merely reciprocals of similarity coefficients).  

The advantage of similarity coefficients is that they can easily be constructed in such a way that 

information from variables on different types of scale can be combined. Thus it is possible to 

analyse measurement data together with counts from contingency tables. However, and this is a big 

disadvantage, when constructing the similarity coefficients the connection between objects and 

variables is broken. A coefficient is a general expression of similarity between two objects 

calculated from the state of their variables. Afterwards it is not possible to see the contribution of 

the individual variables, and these are completely left out of the analysis. 

 

The computational background to PCA, CA and MS 

It is quite difficult for a non mathematician (like myself) to grasp the rationale behind the methods 

let alone the actual computations. The following is an attempt to make a very informal introduction 

to the three methods. The core of computation for all three is identical, but for clearness of 

presentation the following will be worded along the lines of a PCA. Later, when the three methods 

are exemplified, I will go into more detail with the characteristics of the individual methods and the 

differences in output they produce. If you wish to get a more appropriate introduction to these 

methods M.J. Baxter’s Exploratory Multivariate Analysis in Archaeology (1994) can be 

recommended. 

If you have two variables like Rim diameter and Neck diameter describing a series of pots 

(objects) you may depict their interrelationship in a two dimensional plot with each set of linked 

observations of Rim diameter and Neck diameter shown as points. You will probably find that the 

points tend to form a linear configuration due to covariance between the two variables. This linear 

trend can be described with a line known as a regression line through the point scatter based on 
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some criterion of fit. This line can be seen as a one dimensional representation of information 

stemming from two dimensions. The representation will not be perfect of course. The points will be 

scattered to both sides of the line with varying distances known as residuals. 

A traditional regression line takes its starting point in one of the variables (the independent 

variable, by convention placed on the x axis) and use a criteria of fit based on the dependent 

variable (y axis) exclusively (fit is measured as distance from points to regression line parallel to the 

axis of the dependent variable). Thus the result will differ according to which variable is chosen as 

the independent. 

There is another regression method called orthogonal regression, where the variables are 

independent. Finding this regression line is based on a criterion of fit where the distance from the 

points to the regression line has to be measured perpendicular to this. The criterion is that the 

squared sum of distances from the points to the regression line is a minimum. It is obvious that 

finding the solution to this problem is not trivial as the criteria of fit is measured perpendicular to 

the line we seek, and it is hence impossible to set up a simple formula, because we do not know in 

which direction to measure. It can be shown, however, that the solution will be one of a simple 

rotation of the axes describing the two variables if their point of origin is shifted to the common 

centre of mean values. What is obtained are two new axes perpendicular to each other (exactly as 

the originals), where the first covers the maximum part of variation in the point scatter and the 

second the residuals.  

It is not difficult to imagine that the principle of orthogonal regression will work with three 

variables depicted in a three dimensional space as well. Following the orthogonal regression – 

rotation of the axes around the centre of mean values – the leading axis in the rotation will cover the 

maximum part of the variation of the three original variables. The second axis will cover the 

maximum part of the remaining variation, and the third axis the rest. In the process of orthogonal 

regression we aim to represent as much information as possible on the first axis, as much of the 

remainder information as possible on the next axis, etc. We call the leading axis in the rotation for 

the first Principal axis, the next for the second Principal axis, etc. 

Obviously, we are not satisfied with analysing just three variables together. However, bringing 

more than three variables into an analysis blocks our visual geometric understanding. We have to 

look at the problem arithmetically, which also of course is the way we have to deal with it 

computationally. 

If we go back to the two dimensional case it is fairly easy to see that the two new principal axes 

(call them P1 and P2) being a transform (rotation) of Rim diameter and Neck diameter must relate to 

these original variables in a unique way that can be described through simple linear equations. Thus 

the new axes or components as they are called, when we view the problem arithmetically, P1 and P2 

are constituted by linear combinations of Rim diameter and Neck diameter: 

  

P1 = a1 Rim diameter + a2 Neck diameter 

P2 = b1 Rim diameter + b2 Neck diameter 

 

where a1, a2, b1 and b2 are positive or negative values.  

Now if we have three variables like Rim diameter, Neck diameter and Shoulder diameter we 

will just have to add a new element to the equations and at the same time of course we get three 

principal components: 

 

P1 = a1 Rim diameter + a2 Neck diameter + a3 Shoulder diameter 

P2 = b1 Rim diameter + b2 Neck diameter + b3 Shoulder diameter 

P3 = c1 Rim diameter + c2 Neck diameter + c3 Shoulder diameter 
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When we view the problem in this manner there is obviously no limit to the number of variables we 

can include. We simply add a new principal component and a new element to each of the 

component equations. 

Still we have to find the values of a1, a2, a3 etc. and the problem does not become less by turning 

it from a geometrical problem into an arithmetical problem. The solution lies within matrix algebra 

and specifically with a unique factorisation of a matrix called singular value decomposition. The 

singular value decomposition of a matrix (table of input data in our case) can be shown to produce 

the components we look for. For an introduction to matrix algebra and singular value 

decomposition you should read Baxter 1994, Appendix B. 

There are different algorithms for performing singular value decomposition in a computer. The 

most economically of these in terms of speed and storage uses iterative procedures that gradually 

converge towards the desired result, and stop when a control value shows that the result obtained is 

satisfactory. Although generally very stable and reliable, it occasionally happens that convergence 

is not reached, and calculations have to stop without result. The algorithm used in CAPCA is one 

published by Wright in 1985.  

To gain further insight into this type of multivariate analysis and the kind of information it 

provides I will take the example with the pot diameters a little further. In doing so I will move 

directly into the realms of PCA, and part of what is said here will be repeated when we turn to the 

actual examples of this specific type of analysis. 

The new set of axes created by singular value decomposition is technically referred to as 

eigenvectors, but in connection with a PCA they are called principal components. The principal 

components are ranked in such a way that the first component covers the largest part of the total 

variation in the data set, the second component the second largest part, etc. They may be viewed as 

a new set of variables substituting the original ones, and in doing so they retain the total amount of 

variability in the data, but represent it in a different, more structured way. 

The values in front of each of the original variables in the equations of the principal components 

are called loadings. One of the things they show is how large a part of the variation of the original 

variables is represented in the new principal components. To see how, you should “read” vertically 

for each of the original variables. With reference to the equations below, for each of the original 

variables the sum of squared values will amount to 1 (= 100%) and the percentages of variation in 

Rim diameter that goes into P2 is thus the square of -0.26, which equals 0.07 (= 7%) 

 

P1 = 0,96 Rim diameter + 0,95 Neck diameter + 0,97 Shoulder diameter + 0,88 Height  

P2 = - 0,26 Rim diameter - 0,28 Neck diameter - 0,22 Shoulder diameter + 0,32 Height 

P3 = 0,11 Rim diameter + 0,02 Neck diameter + 0,00 Shoulder diameter - 0,34 Height 

P4 = - 0,05 Rim diameter - 0,03 Neck diameter + 0,11 Shoulder diameter - 0,02 Height 

 

Loadings have much the same qualities as correlation coefficients. Not only do they tell by their 

size (between 0 and 1) how strong the correlation is, but also by their sign whether it is a positive 

(when one grows the other grows as well) or negative (when one grows the other diminish) 

correlation. In the above example we find that all variables have a strong positive correlation with 

the first principal component (heights a little less than the diameters). For the second principal 

component on the other hand there is a weak negative correlation with the diameters and a weak 

positive correlation with heights. To help understand how the original variables are structured in 

relation to the principal components it is often a help to view the loadings in two way plots. 

If we take the sum of squared values for each principal component we get what is termed the 

eigenvalue of the component (also occasionally referred to as latent root). This can tell us how large 
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a part of the total variation a principal component represents. As the total variation of the example 

above is 4 (1 for each of the original variables) and the eigenvalue of P1 is 3.54 (sum of squared 

values) then P1 is accounting for 88% of the total variation. 

The values of the objects – here the individual pots – on the principal components are called 

Scores. They are calculated by substituting the variables in the equations with the actual values for 

the individual objects. The scores will consist of a blend of positive and negative values and will 

bear no resemblance to the input values. The main reason for this is that as a minimum all input 

values has been centred (by subtraction of their mean value) and most likely also standardised (by 

division with their variance or standard deviation). Otherwise they have not been altered. If you 

could make the mind experiment of plotting the pots in a four dimensional space of the original 

variables and then see them in the four dimensional space of the new principal components you 

would find that they would display the exact same spatial structure. Only the axes would be directed 

differently. 

As with the original variables, a meaningful way to view data is through two way plots of the 

principal components. The major difference, however, is that whereas you have to plot all original 

variables against one another to gain an overview, you only have to plot the first few components, 

and possibly only the first two to view the structure of the data. In the above example the two first 

principal components covers as much as 96% of the total variation indicating that the two last 

components are of no interest at all. The analysis has thus very effectively reduced the number of 

dimensions needed to give an adequate representation of the information. This capability of 

representing the important part of the variation in complex data sets by way of a few new principal 

components is the hallmark of this type of multivariate method. It makes it a very efficient tool to 

seek structure in data. 

 

PRINCIPAL COMPONENT ANALYSIS 

The optimal type of data for PCA is measurements of some kind. Other kinds of quantitative data 

can also be analysed including indexes and counts, but the latter type of data is far more suited for 

CA and should preferably be analysed through this. PCA is a classic, and as such it has been used 

intensively, and consequently often with little regard to the nature of the data analysed. It will 

probably help here if it is understood what happens to the data you input prior to analysis in PCA.  

      If we return to what was said earlier about finding the orthogonal regression lines one change to 

the data is a must. For each variable we have to subtract the mean value from each value of the 

variable in order to centre the variable on its mean. Thereby we create a common centre through 

which all variable axes pass. The actual formula used is: 
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The division by the square root of the number of instances is a division by a constant, since it will 

be the same for all variables. It thus does not change the overall structure. If we exclusively use this 

kind of transformation to the data, the PCA will be based on what is known as a covariance matrix. 

We may, however, also choose to standardise data. Standardisation means that all variables 

apart from being centred also have unity dispersion. That is they have all a standard deviation of 1. 

To obtain this we use the following formula: 
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Using this standardisation we radically change the absolute size of values. Now they are all more or 

less equal in weight, exactly as if we had done percentage calculations on counts. If we input data 

standardised in this way, the PCA will be based on what is known as a correlation matrix. 

The standard deviation and consequently the correlation coefficient can be considered correct 

only if the variables are reasonably normally distributed. Therefore we have to check the measures 

of skewness and kurtosis, both of which have to be not two far from zero. Any measure between 1 

and -1 are fine for our purpose and even a few positive or negative readings of 2 or 3 should not 

disturb us. However, if the absolute values become very high or if there are many between 1 and 3 

we should consider not using the correlation matrix. Before doing so we should check, however, if 

scale transformations of the variables can solve the problem. In CAPCA you can choose between 

Log10, Ln or ArcSin transformations to reduce skewness and kurtosis to acceptable levels. 

For a PCA, weighting of variables beyond that of standardisation should normally not be 

considered. Weighting of objects on the other hand is quite feasible and legitimate. A good case is 

seen below in the example of Neolithic pots. 

It is standard procedure to plot two variables against each other in order to evaluate the value 

distribution of the objects with respect to the two variables. It is obvious that we can do the same 

with principal components. Normally we will only make a plot of the first and second principal 

components against each other, and possibly the second against the third to see if interpretable 

information should exits on the latter. The plots can be looked upon exactly as plots of the original 

variables, but you won’t find any likeness between the values of the component axes and the values 

of the original variables. Neither do the sign of the values (negative or positive) mean anything by 

itself. In fact you will often see sign reversals in the output after even minor changes to the input (se 

the example on Neolithic pots below). 

The original variables cannot be plotted together with the objects (as it is possible with CA). 

You can however create a so called biplot of these variables as vectors in the n dimensional space 

created by the principal components. Normally you will only inspect the plot of variables against 

the two first principal components. Each variable will be represented by a point, but you should 

imagine lines (vectors) reaching from 0,0 in the plot to the points. This vector plot should be 

interpreted in terms of correlation/covariance. Vectors in the same direction has positive 

correlation/covariance, Vectors in opposite directions have negative correlation/covariance. Vectors 

perpendicular to each other have zero correlation/covariance. Long vectors have strong positive or 

negative correlation/covariance. Short vectors have small positive or negative 

correlation/covariance. 

The only connection between the objects and variable plots lies in the orientation defined by the 

principal components. Thus a variable vector stretching along, say the positive part of the first 

principal component, indicate that the objects lying in the same direction in the objects plot will 

have high values for this variable, while those lying in the opposite direction will have low values. 

 

Example using measures from 430 Iron Age lance heads 

To explore the difference of using PCA based on a covariance matrix and a correlation matrix, and 

to have a closer look at the information we receive from PCA, I will look at an example with 

spearheads from the Iron Age votive bog finds from Illerup, Eastern Jutland, Denmark (Ilkjær 

1990). The 430 spearheads are described by nine different measures (Ilkjær 1990: 30), and they all 
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belong to three specific types (14, 15 and 18) defined in the publication based on selected criteria’s 

among these measures. Thus a PCA of all the measurement data ought to produce a result in 

accordance with the type division. 

We start out with a PCA based on a correlation matrix. As the variables become standardised 

through the standard deviation they should be as close to a normal distribution as possible. To 

provide better normality an Arc Sin transformation has bee applied. Since all data are standardised 

such a transformation will not change the structure of the data. 

 
Skewness Kurtosis

Width of blade -0,36 0,31 No transformation

Thickness of blade -0,39 4,23 No transformation
Length of lance head -0,04 0,65 No transformation
Length of socket -0,01 1,98 No transformation

Length of blade 0,20 0,43 No transformation
Distance from socket to widest part of blade 0,09 -0,47 No transformation

Thicknes of lower part of socket -2,02 24,03 ArcSin transformed
Thickness of upper part of socket -0,99 13,80 ArcSin transformed
Width of socket 0,32 5,53 ArcSin transformed  
 

Looking at Skewness and Kurtosis the main measurements – Width of blade, Length of lance head, 

Length of socket, Length of blade and Distance from socket to widest part of blade – are well 

behaved. The measurements Thickness of blade, Thickness of lower part of socket, Thickness of 

upper part of socket and Width of socket, which all have a very narrow measuring range, all have a 

high positive kurtosis indicating that their distributions are too high and narrow for normality.  

Three of them have been ArcSin transformed, but with little result. 

The correlation coefficient matrix is significant for understanding the result of PCA. It gives an 

immediate impression of which variables co-vary and whether the association is positive or 

negative. One way of using this matrix is to outline clusters of high positive or negative values by 

adding colours. Colouring important coefficients is an efficient way to outline the structure of co-

variation among the variables. In general the method does not work with a covariance matrix, 

because the size of the coefficients here varies with the absolute measuring range of the variables 

and because most variables tend to be positively correlated no matter what variation may be 

uncovered.  

 

 
 

Looking at the correlation matrix we find two distinct clusters of coefficients. The major (red) link 

together the main measurements with positive correlations. Thus there are high correlations 

between Length of lance head, Length of blade and Distance from socket to widest part of blade. 

Linked to this cluster are also Length of Socket and Thickness of blade. Another cluster (blue) with 

internal positive correlation consists of Thickness of lower part of socket, Thickness of upper part of 

socket and Width of socket. There is a negative correlation between this cluster and the major one 

most clearly expressed by the correlation (green) between Width of socket on the one side and Width 

Skewness and kurtosis for values of nine 

measurement variables with values from 430 

spearheads. 

Correlation coefficient matrix 

between nine measurement variables 

with values from 430 spearheads. 
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of blade and Distance from socket to widest part of blade on the other. Thus there seems to be a 

tendency that plump sockets go with slender and partly smaller blades and vice versa.  

 
1. Axis 2. Axis 3. Axis 4. Axis

EigenValues 4,67 2,10 0,99 0,60

Explanation % 51,85 23,30 10,95 6,64

Cumulative Explanation % 51,85 75,15 86,10 92,74  
 

Four principal components have been calculated, and looking at the Eigenvalues this appears to be 

enough to represent all important information. In fact the first two components cover 75% of all 

information, and it should be sufficient to study a graphical representation of these two axes to 

evaluate the result of the analysis. 

 

 
 

What can be inferred from the correlation matrix is clearly displayed in the variable plot. The main 

cluster of strongly correlated measures is seen to the right, and the cluster of socket thickness and 

width measures is seen to the left. The negative correlation between the two clusters is shown by 

their position on each side of 0 on the first principal component. On the second principal component 

there is a positive correlation between Width of socket, Length of Socket and Thickness of blade 

suggesting that these tend to vary together. In opposition lies Width of blade indicating that wide 

blades are generally thin and goes with short sockets. 

 

Biplot of variable 

loadings from a 

PCA based on 

correlation 

coefficients.   

Data consist of 

430 spearheads 

measured by nine 

variables. 
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Looking at the objects plot we find that the three types are fairly well separated through the 

analysis. They were originally defined by setting hierarchical ordered thresholds for selected 

measures (Ilkjær 1990 p. 42, Abb. 28). The classification scheme is very complex and especially for 

type 14 difficult to follow. No less than four different sets of hierarchically organised criteria can 

lead to the type. Using the objects plot together with the variables plot we can provide a general 

characteristic of the three types. Type 14 tends to have relatively short, narrow but thick blades and 

long and plump sockets. Type 15 tends to have long wide blades with a fairly slender socket. Type 

18 tends to have short, relatively wide blades and a short plump socket.  

We will now rerun the analysis based on the covariance matrix instead of the correlation matrix. 

 
Covariance matrix

Width of blade 78,33

Thickness of blade 2,35 3,10
Length of lance head 442,56 80,47 7461,49
Length of socket 0,46 15,09 808,97 238,20

Length of blade 442,07 65,38 6652,08 570,88 6080,67
Distance from socket to widest part of blade 126,16 8,65 1224,11 41,49 1182,54 303,41

Thickness of lower part of socket 11,51 0,80 61,02 3,86 57,14 16,23 4,20
Thickness of upper part of socket 6,85 1,65 60,07 4,16 55,90 12,59 1,86 2,22
Width of socket 11,70 0,36 44,10 -6,03 50,12 17,35 2,48 1,57 3,05

Width of blade

Thickness of blade

Length of lance head

Length of socket

Length of blade

Distance from socket to widest part of blade

Thickness of lower part of socket

Thickness of upper part of socket

Width of socket

 
 

Looking at the covariance matrix we can immediately see that it differs a lot from the correlation 

matrix. In the diagonal cells, where, due to standardisation, the correlation matrix held 1’s, we find 

numbers that are an expression of the value range of the variables (actually the average squared 

distance of the individual values from the mean value of the variable). We can see that the size 

effect also affects the coefficients of the off diagonal cells. Thus cells combining Length of Blade 

and Length of lance head with other variables have considerably higher coefficients than any other 

cells. A coefficient, however, is not merely a reflection of the combined value ranges of two 

variables, as can easily bee seen from some of the smaller coefficients. We are dealing with a 

measure of covariance. Since no standardisation has taken place, however, the range of values that 

Objects plot of 

a PCA based 

on correlation 

coefficients. 

Data consist of 

430 spearheads 

measured by 

nine variables. 

Covariance coefficient matrix 

between nine measurement variables 

with values from 430 spearheads. 
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the individual variables cover does influence the result of the analysis. If this turns out to be a 

problem you should use correlation coefficients. 

 
1. Axis 2. Axis 3. Axis 4. Axis

EigenValues 13498,33 316,19 49,58 16,98

Explanation % 97,20 2,28 0,36 0,12

Cumulative Explanation % 97,20 99,48 99,84 99,96  
 

If we look at the eigenvalues it is obvious that the size effect of value ranges has ended up on the 

first principal component. An explanation % of 97 compared to 52 with the analysis based on 

correlation coefficients says it all. In this case we cannot use the eigenvalues to decide how many 

components we need to cover the important information. As we shall see the second component 

holds a lot of important information. 

 

 
 

The first thing to note is that the two marked clusters of variables we found in the first analysis at 

each end of the first component are gone. Instead the first component presents a fairly direct 

reflection of the size of the value ranges of variables with the two really big ones far to the right. In 

accordance with what usually happens, when size plays a role, all variables are positively 

correlated. As for the second principal component we find Length of socket negatively correlated 

with Width of blade and Distance from socket to widest part of blade exactly as in the first analysis, 

but in this case Length of lance head and Length of blade follow this split as well. 

 

Biplot of variable 

loadings from a 

PCA based on 

covariance 

coefficients.   

Data consist of 

430 spearheads 

measured by nine 

variables. 
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The surprise comes with the plot of objects. It is a far better result than the one obtained with the 

correlation matrix. Not only are the groupings more distinct, but there are no longer apparent 

“misclassifications” (e.g. objects classified as type 15 lying among objects of type 18). Why is this 

so? One obvious explanation is that the standardisation taking place in the first analysis gives too 

much influence to unimportant variables like the various sickness measures. Incidentally, these are 

also the variables that are far from normality, and thus not suited for a PCA based on correlation 

coefficients. To test this I have run two new analyses where Thickness of lower part of socket, 

Thickness of upper part of socket, Thickness of blade and Width of socket have been excluded.  

The analysis using the covariance matrix shows no changes at all in the objects plot and the only 

change in the variables plot is that the four excluded variables have disappeared. The analysis using 

the correlation matrix, however, changes a lot. The plot of the objects looks as follows: 

 

 

Objects plot of 

a PCA based 

on covariance 

coefficients. 

Data consist of 

430 spearheads 

measured by 

nine variables. 

Objects plot of 

a PCA based 

on correlation 

coefficients. 

Data consist of 

430 spearheads 

measured by 

five variables. 
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The separation of groups is now very good and there is hardly any overlap between types. It looks 

very much like the plot from the analysis of the covariance matrix, but it is clearly not identical. It is 

difficult to say which we should prefer. 

This example clearly demonstrates the differences and problems with the two input types. 

Correlation matrix input is the “cleaner” in the sense that you have a more orderly universe of 

correlation coefficients, sensible eigenvalues and a variable plot that does not get swamped by the 

size effect of the variables. To use it, however, you have to be certain that you do not include 

variables that hold nonessential information, variables that just provide random noise or variables 

that are far from normality. Through the standardisation process all variables become of equal 

importance. The best you can do is to use both of the methods, experiment with them and compare 

the results. In this way you will also learn something about your variables. 

 

Example using measurement data on 66 Early Neolithic pots 

The data for this example is taken from Koch 1998. In this study a total of 153 complete funnel 

neckedbeakers were measured and drawn, and the profiles were subsequently scaled to the same 

height and visually compared (Koch 1998 p. 67 ff). Based on this comparison nine different shape 

modes were separated covering the whole of the Early Neolithic and the first half of the Middle 

Neolithic. Many of the shape modes are very close to each other, but characteristic types of 

decorations help to separate them. A PCA of all pots shows a confusing, mixed spread of pots from 

various shape groups. It is however possible to see that there is a pattern among the early shape 

groups and the later shape groups isolated. This was why PCA’s for the early and the late material 

originally were run separately (Koch 1998 p.71 ff.), and why the material selected here for the 

example only comprises 66 pot of shape groups 0, 1, 2 and 3. 

 

 
 

The original measurements were taken as coordinates to characteristic points of the pot profile 

following the scheme shown above to the left. For this example these coordinates have been 

recalculated into a number of characteristic measurements as shown above to the right. Apart from 

making it easier to interpret the variable patterns in the analysis, this kind of measurement scheme 

also makes it possible to include fragmented material, say the neck part of pots, and then only 

analyse the neck variables. 
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The characteristic measurements calculated are all in mm and should be directly comparable. There 

are, however, considerable differences between the measuring span of the variables. Especially the 

curvature measurements and neck base width are numerically small and with a limited span. It is 

clearly to be expected that a PCA based on the correlation matrix will be distorted by the variation 

in these variables unless they co-vary very systematically with some of the larger variables. It is 

therefore the obvious choice to start out with a PCA based on the covariance matrix. 

 
Covariance matrix

Base width 2,35

Belly height 5,49 18,73

Belly width 2,25 8,41 5,41

Belly curvature 0,31 1,34 0,84 0,15

Shoulder heigth 1,44 3,55 2,14 0,34 1,89

Shoulder width 0,36 0,75 0,62 0,09 0,57 0,25

Shoulder curvature 0,00 -0,02 0,02 0,00 0,02 0,02 0,00

Neck base heigth 0,34 0,38 1,08 0,12 0,31 0,21 0,03 1,22

Neck base width 0,07 0,11 0,17 0,02 0,07 0,04 0,00 0,18 0,04

Neck height 1,57 4,31 2,94 0,43 1,69 0,56 0,03 0,63 0,13 2,58

Neck width 0,61 2,28 1,15 0,19 0,48 0,08 0,00 -0,07 0,00 0,73 0,48

Neck curvature 0,04 0,17 0,11 0,02 0,04 0,01 0,00 0,02 0,00 0,08 0,03 0,01

Base width

Belly height

Belly width

Belly curvature

Shoulder heigth

Shoulder width

Shoulder curvature

Neck base heigth

Neck base width

Neck height

Neck width

Neck curvature
 

 

Looking at the covariance matrix we find, as in the previous example, that the size of the 

coefficients in the diagonal cells quite clearly reflects the span of the variables. It is not as marked 

as with lance heads, but looking at the rest of the coefficients, seeing that very few are negative and 

larger values primarily occur where variables with bigger spans combine, we can clearly expect the 

variable plot to sort the variables according to size of value span. 

 

 
 

This is also what happens. Indeed, if you compare the size of the coefficients on the diagonal with 

the placement of the variables along the first principal component of the variable plot, you will find 

that Belly height, which has the highest value, lies to the right, and Shoulder curvature, which has 

Covariance matrix between 12 

measurement variables based 

on data from 66 pots. The 

variables are not weighted. 

Biplot of variable 

loadings from a 

PCA based on 

covariance 

coefficients.   

Data consist of 66 

pots measured by 

12 variables. The 

variables are not 

weighted. 
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the smallest value, lies to the left. The rest are spread in between in rank order of size with a 

distance between them that reflects their approximate size difference.  

 

 
 

When we look at the object plot we find that types 1, 2 and 3 are separated, but only in the second 

principal component and not the first, where you would expect the major separation to occur. In 

stead pots from all three types are strewn out along the component. The reason becomes 

immediately obvious, when you check the information on the individual pots. Those furthest to the 

right are the biggest pots and those furthest to the left are the smallest ones. The first principal 

component simply sorts the pots according to size.  

This size sorting happens very often in a PCA if the magnitude of the variable values depends 

on the size of the objects. It did not happen with the lance heads because size itself in this case 

seems to be a constituting element in the types, but with ceramic pots it is an entirely different 

matter. The shape of a pot is more or les independent of its size. Pots with the same shape can easily 

be made in very differing sizes depending on functional needs. The problem with the size element 

in a PCA arises because the measurements taken to outline the shape of the pots at the same time 

are measurements of size. 

To avoid size sorting in the first principal component you have either to devise some size 

independent measures - indexes and angles (creating a variety of other problems), or much better 

create a weighting factor for the objects that removes the size factor. One obvious solution with pots 

would be to use the volume as a weighting factor (1 divided with the cube root of volume would be 

an appropriate weighting factor). Much simpler and just as efficient is a factor for each object based 

on the sum of all measurements for the object. This would be useable for analyses of both complete 

pots and analyses of parts of pots, where the volume information for the part analysed may not be 

available. The weighting factor used in the following is (10/sum of measurements) for each pot. In 

CAPCA weights have to lie between 1 and 0. The factor 10 is here chosen because it nicely 

balances the weights within this interval. Anyway, you will have to choose a factor that is equal to 

or smaller than the smallest sum. Otherwise you will get weights larger than 1. 

 

Objects plot of 

a PCA based 

on covariance 

coefficients. 

Data consist of 

66 pots 

measured by 12 

variables. The 

variables are 

not weighted. 
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Clearly the use of weights to eliminate the effects of size on objects work. The first principal 

component now shows variations in shape separating Type 1, 2 and 3. There are no distinct 

groupings, however. Rather a continuous development is suggested, which would be in agreement 

with a claimed typological development from Type 1 to Type 3 held by some scholars. The position 

of Type 0, claimed to be the oldest type, begs for an archaeological explanation, however. 

The next step is to run a PCA based on the correlation matrix using the same weights. 

 

 
 

Objects plot of a 

PCA based on 

covariance 

coefficients. Data 

consist of 66 pots 

measured by 12 

variables. The 

variables are 

weighted to 

eliminate size as a 

discriminating 

factor. 

 

Objects plot of a 

PCA based on 

correlation 

coefficients. Data 

consist of 66 pots 

measured by 12 

variables. The 

variables are 

weighted to 

eliminate size as a 

discriminating 

factor. 
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The result shows the same general trend as that of the covariance matrix with type 1 at one end type 

2 in the centre and type 3 at the other end of the first principal component. However, there are also 

differences. Type 0 now seems more adjacent to Type 1 and there is a tendency for a break in the 

middle between Type 1 and type 2 and 3. This would tend to be in line with the suggestions by 

other scholars, who claim that there is a major difference between type 1 and its cultural milieu on 

the one hand and type 2 and 3 and their cultural milieu on the other. 

 

 
 

If we look at the variable plot we can see that there is an opposition on the first principal component 

between Belly height, Neck width, Belly curvature and Belly width to the left and Shoulder width, 

Shoulder height, Neck height and Neck base width to the right. It is clearly these variables that 

condition the potential bipartition of the pots. In the middle are four variables that do little to this 

division except possibly confuse it. Potentially it could give a clearer picture if we left out Base 

width, Shoulder curvature, Neck curvature and Neck base height. 

 

 

Biplot of variable 

loadings from a PCA 

based on correlation 

coefficients.   

Data consist of 66 pots 

measured by 12 

variables. The 

variables are weighted 

to eliminate size as a 

discriminating factor. 

Objects plot of a 

PCA based on 

correlation 

coefficients. Data 

consist of 66 pots 

measured by 8 

variables. The 

variables are 

weighted to 

eliminate size as a 

discriminating 

factor. 
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The break between the two groupings has become slightly more accentuated, but overall the picture 

has not changed, and the four excluded variables had thus no significant influence on the result. If 

we turn to the statistics and the variable plot we may try to interpret the result a little closer. 

 

 
The variables are generally well behaved with respect to Skewness and Kurtosis. The correlation 

coefficients are not particular high, and their patterning can be a little difficult to see at first, but 

there are two groups of variables with mutual positive correlation. The one consist of Belly height, 

Belly width, Belly curvature and partly Neck width (red), the other of Shoulder height, Shoulder 

width, Neck base width and Neck height (blue). The coefficients between members from these two 

groups show marked negative correlation (green). Clearly this pattern lies behind the splitting of the 

pots in two groups. How it does can best be seen from the variables plot. 

 

 
 

In the variables plot the first group (red) lies to the right on the first principal component, which is 

the side where Type 0 and Type 1 pots are placed in the objects plot. The other group (blue) lies to 

the left on the first principal component, which is the side where Type 2 and Type 3 pots are placed 

in objects plot. The negative correlation between members of the two groups is reflected in their 

position on both sides of zero. An interpretation in general terms would be that Type 0 and 1 pots 

have a high and wide, curved belly, a small insignificant shoulder and a low, flaring (wide) neck. 

Type 2 and 3 pots on the other hand have a low and not very wide belly, a pronounced shoulder and 

Correlation matrix between 8 

measurement variables with data 

from 66 pots. The variables are 

weighted to eliminate size as a 

discriminating factor. 

 

Biplot of variable 

loadings from a 

PCA based on 

correlation 

coefficients.   

Data consist of 66 

pots measured by 8 

variables. The 

variables are 

weighted to 

eliminate size as a 

discriminating 

factor. 
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a generally high, non-flaring neck with a clear tendency for a narrowing of the lower part. If we 

focus on the second principal component, we find from the objects plot that Type 2 pots lies on the 

negative side of the component and Type 3 pots lie on the positive side. Judging from the variables 

plot we can suggest that Type 3 pots have generally higher necks than Type 2, whereas Type 2 pots 

have generally more pronounced shoulders than Type 3. The high position on the second principal 

component of Belly width and Belly curvature probably reflects that the small group of Type 3 pots 

and one Type 2 pot that separates themselves in the top centre of the objects plot has fairly wide and 

curved bellies. 

In this example the PCA on a correlation matrix came out just as good as or better than the one 

on the covariance matrix. The reason must be that in this case the variables with a very small value 

span are just as meaningful and informative as those with a large value span. They do not become 

noise emitters when normalised. There is thus no way in which we can decide in advance if we 

should choose a covariance or a correlation matrix. We have to argue from the nature of the 

variables combined with results of actual analyses, which one we should prefer. 

 

CORRESPONDENCE ANALYSIS 

Correspondence Analysis takes counts rather than measures as input. Counts are by definition 

positive integers with zero being the state of no occurrence. When counts are presented in a table 

we call this a contingency table. The first thing to note about a contingency table is that by 

definition all entries are on the same scale (counts are counts), which means that in contrast to 

measurement data we can perform calculations across both variables and objects, and not just across 

the variables. Thus creating sums of counts on objects across variables (row sums) is just as 

meaningful as creating sums of counts on variables across objects (column sums). 

To work with a contingency table we need to have a notion of what constitute structure in the 

table, and by the same token how lack of structure should be defined. In a way the row and column 

sums defines the basic content of the table, and we can claim that the content of a table is 

unstructured if the individual cell values is a mere random reflection of the row and column sum 

values. This so called randomized table or table of expected values can simply be obtained for each 

cell by multiplying the corresponding row sum and column sum and divide the result with the total 

number of counts in the table. 

The structure of contingency tables can then be seen as deviations between observed and 

expected cell values. The actual measure used is calculated as ((observed cell value - expected cell 

value) / square root of expected cell value). This is in fact equal to the terms used in chi-square 

tests. 

When performing an orthogonal regression on this table it will be the patterns of deviation 

above and below the expected values that will form the covariance patterns leading to the separation 

of a set of new axes. This new set of axes created by orthogonal regression is referred to as 

principal axes (rather than principal components to avoid confusion with PCA). The principal axes 

are ranked in such a way that the first axis has the largest representation of the total variation in the 

data set, the second axis the second largest part, etc. They may be viewed as a new set of variables 

substituting the original variables, and in doing so they retain the total amount of variability in the 

data, but represent it in a different more structured way. 

As in PCA we can speak of loadings and scores, but it is problematic to do so. First of all it is 

not constant in CA what should technically be considered variables and objects. This is an 

important difference to PCA where variables are treated differently than objects. In CA there is no 

difference and the smallest dimension of the dataset is computationally considered to be the 

variables. Secondly because of the equality, or symmetry if you wish, of variables and objects, 

loadings (and scores) are not scaled in the same way as in PCA, and there is thus no direct 
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equivalence with correlation coefficients. Consequently, it is confusing to speak of loadings and 

scores. Because they are scaled equally, to allow them to be plotted together in one diagram, it is 

customary to speak of variable coordinates and object coordinates in stead. 

As in PCA an eigen value is associated with each principal axes, but the explanation of the 

value is not as straight forward as with PCA. The total sum of eigen values, which in CA is called 

the inertia of the data set, is not equal to the number of variables, but usually much smaller due to 

scaling. The part of the total inertia represented by the eigen values of each principal axis does, 

however, show the part of the total variation covered by the individual axes exactly as in PCA. 

There are no immediate concerns before running a CA. Just press the button to run the analysis. 

Understanding the result, however, is not straight forward, and in many aspects it can become more 

complicated than with a PCA. Indeed you may have to run a lot more analyses, where you step by 

step alter the input. The alterations to the input may consist of weighting of objects and/or variables 

and of omission of either objects or variables. To decide what to do, calls for an understanding of 

the output in both graphical and numerical format.  

The first thing to emphasize, as already stated, is that variables and objects can be presented 

together in the coordinate system formed by the principal axes. Further in doing so the position of 

the variables in the plot is directly interpretable in relation to the objects and vice versa. We can 

visually inspect and interpret variables and objects in one single plot. To gain a better understanding 

of visual interpretation we will look at a few artificial examples with idealised matrixes. We start 

out with the matrix below, where the cells on each side of the diagonal filled is with 1’s, and the rest 

is filled with 0’s (blanks are always 0 in a CA). 

 

 
 

This matrix is quite interesting as the two rows of 1’s form a peculiar pattern of what goes with 

what. Object U8 is linked with object U10 through variable V9, and object U9 is linked with objects 

U11 through variable V10. Objects U8 and U10, however, are not linked with U9 and U11 in any 

way. Nor are variable V9 and Variable V10 linked to each other in any way. This pattern continues 

throughout the matrix dividing objects and variables in two sets with the same number of objects 

and variables in each set. There is no connection between the two sets, but within each set there is a 

systematic relationship between objects and variables as each object is linked to the next object 

through one variable and each variable is linked to the next variable through one object. The 

graphical representation of this is shown in the following plot of the first two principal axes. 

Idealised 20 by 20 matrix 

with two independent sets 

of objects and variables. 

Within each set the 

objects and variables are 

linked together in a chain 

of shifting objects and 

variables. 
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We find that the two sets are placed at each end of the first principal axes reflecting the lack of 

connection between them. Within each set there is a very systematic layout that reflects that each 

object is linked by exactly one variable to the next object, and that each variable is linked by exactly 

one object to the next variable. All together they form a chain of shifting objects and variables that 

is laid out as a straight line on the second Principal Axis with a constant distance between objects 

and variables (except for the edge effects of the matrix). You can interpret this layout directly in 

simple terms of closeness between objects and variables as reflected by their combinations. 

 

 
 

Now let us try to see what happens when we fill the diagonal and the cells adjacent to the diagonal 

to one side with 1’s, while the rest of the matrix is filled with 0’s. We see that V9 is linked to U9, 

which is linked V10, which is linked to U10, which is linked to V11, which is linked U11, etc. Thus 

all objects and variables form a single chain with shifting objects and variables. This results in the 

following plot. 

CA of an idealised 20 by 

20 matrix with two 

independent sets of 

objects and variables. 

Within each set the 

objects and variables are 

linked together in a chain 

of shifting objects and 

variables. Combined plot 

of 1. and 2. principal 

axis. 

Idealised 20 by 20 matrix 

with objects and 

variables that are linked 

together in one chain of 

shifting objects and 

variables. 
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The arc shaped layout is characteristic for data with a pattern of continuity between objects and 

variables. That is when you move across the objects there is a gradual and systematic replacement 

of variables and vice versa. This is also the criteria for seriation, and the perfect arc shaped layout 

indicates that the data meets the criteria for at perfect seriation. Again we see the equally spaced 

objects and variables as would be expected from their systematically chained relationship. Why it 

shows up as an arc may not seem evident. It has to do with multidimensionality, though. The plot 

you see is two dimensional, but you must not think of it as two dimensional. It is a line that passes 

through multidimensional space, and the arced layout is a result of a projection into two 

dimensions. It is much like looking at the maps of international flight destinations that you find in 

the flight magazines of any plane. They all form arcs, not because the planes fly a detour, but 

because the shortest route around the globe appears as a curved line on the two-dimensional 

projection of a map. The objective here, however, is not the shortest line, but a line along which the 

objects and variables are evenly and maximally spread. On the first and second axis this is not the 

case. The distribution is denser in the middle and towards the end. If you include the third axis 

(below) you can see why. Over three axes we are not speaking of an arc, but a spiral.  

 

 

CA of an idealised 20 by 

20 matrix with objects 

and variables that are 

linked together in one 

chain of shifting objects 

and variables. Combined 

plot of 1. and 2. principal  

axis. 

CA of an idealised 20 by 

20 matrix with objects 

and variables that are 

linked together in one 

chain of shifting objects 

and variables. Combined 

plot of 2. and 3. principal 

axis. 
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You can find a very detailed discussion of the behaviour of different types of continuity patterns in 

data sets that can be seriated in Jensen & Nielsen 1997. 

V1 and U20 marks the ends of the chain being linked in one direction only. What will happen if 

we link the two together by inserting 1 in the cell that combines V1 and U20, and hence create a 

continuous circular chain? 

 

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 V20

U1 1 1

U2 1 1

U3 1 1

U4 1 1

U5 1 1

U6 1 1

U7 1 1

U8 1 1

U9 1 1

U10 1 1

U11 1 1

U12 1 1

U13 1 1

U14 1 1

U15 1 1

U16 1 1

U17 1 1

U18 1 1

U19 1 1

U20 1 1

 
 

Logically the result should be a circle, and it is. 

 

 
 

Now what happens if we break the chain by setting 0 between U19 and V19, and thus isolating 

U19, U20 and V20? 

 

Idealised 20 by 20 matrix 

with objects and 

variables that are linked 

together in one chain of 

shifting objects and 

variables, and where the 

ends of the chain have 

been “fused” together. 

CA of idealised 20 by 20 

matrix with objects and 

variables that are linked 

together in one chain of 

shifting objects and 

variables, and where the 

ends of the chain have 

been “fused” together. 

Combined plot of 1. and 

2. principal axis. 
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V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 V20

U1 1 1

U2 1 1

U3 1 1

U4 1 1

U5 1 1

U6 1 1

U7 1 1

U8 1 1

U9 1 1

U10 1 1

U11 1 1

U12 1 1

U13 1 1

U14 1 1

U15 1 1

U16 1 1

U17 1 1

U18 1 1

U19 1

U20 1

 
 

We find that U19, U20 and V20 are placed together in one corner, while the remainders, still 

forming a chain, are placed in the opposite corner as a slightly curved line. U19, U20 and V19 are 

what are referred to as outliers – objects or variables that either, as in this example, is more or less 

uncorrelated with the rest of the material, or displays excessive values that set them apart from the 

rest of the material. The latter situation occurs only in connection with counts of numerous 

occurrences, and will be dealt with in the examples below. 

 

 
 

To handle outliers there are only two possibilities: either you remove them from the analysis or you 

use weights to change their behaviour. With the outlier example above, where a complete break in 

continuity of the material exists, removal is the only option. You simply note that U19, U20 and 

V19 are not related to the rest of the material in any way, and then remove them. In other situations 

you can either remove or use weights. Weighting is an essential part of CA’s, but you have to 

carefully consider when and how to use it. In connection with the examples below weighting will be 

discussed in more detail. 

 

Idealised 20 by 20 matrix 

with objects and 

variables that are linked 

together in one chain of 

shifting objects and 

variables, apart from two 

objects and one variable 

that has been isolated 

through a break in the 

chain. 

CA of idealised 20 by 20 

matrix with objects and 

variables that are linked 

together in one chain of 

shifting objects and 

variables, apart from two 

objects and one variable 

that has been isolated 

through a break in the 

chain. Combined plot of 

1. and 2. principal axis. 
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Finally, what will happen if we introduce objects and variables with a constant appearance 

throughout the data? In the following variable V10 appears in all objects, and object U10 scores on 

all variables. 

 

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 V20

U1 1 1 1

U2 1 1 1

U3 1 1 1

U4 1 1 1

U5 1 1 1

U6 1 1 1

U7 1 1 1

U8 1 1 1

U9 1 1

U10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

U11 1 1 1

U12 1 1 1

U13 1 1 1

U14 1 1 1

U15 1 1 1

U16 1 1 1

U17 1 1 1

U18 1 1 1

U19 1 1 1

U20 1 1

 
 

The result is that V10 and U10 are placed together in the centre of the plot with the remaining 

objects and variables stretched out in arcs on both sides of the centre. The seriation totally collapses, 

and had it not been for the very systematic distribution along the diagonal, the objects and variables 

would merely have formed a loosely clustered group around the centre. You should be very wary of 

variables with a constant appearance in your data. Constant variables can ruin the result of any CA, 

whether you are looking for a seriation, clusters, or any other form of structure. In CAPCA you can 

use the information on the sheets Matrix output and Seriation output to track them down. A 

constant variable is one that has a high frequency of non zero cells in connection with presence 

absence data and one that has a uniform value profile across many objects in connection with 

counts. 

 

 
 

Idealised 20 by 20 matrix 

with objects and 

variables that are linked 

together in one chain of 

shifting objects and 

variables, apart from one 

object that appear with 

all variables and one 

variable that appear in 

all objects, and thus acts 

as constants. 

CA of idealised 20 by 20 

matrix with objects and 

variables that are linked 

together in one chain of 

shifting objects and 

variables, apart from one 

object that appear with 

all variables and one 

variable that appear in 

all objects, and thus acts 

as constants. Combined 

plot of 1. and 2. principal 

axis. 
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Example using counts of technical elements on rim shards from pottery 

The material used in this example is adopted from Madsen & Petersen 1984. It is counts of 10 

different technical elements in the decoration on rims of Early Neolithic pottery from 34 settlement 

sites. The size of the sites, or rather the extent of the excavations, varies considerably, and the 

number of decorated rim shards for each site varies accordingly. Thus the largest site has 304 

decorated shards, the smallest six.  

The sites can be classified according to their regional and chronological groupings using 

traditional typo-chronological criteria. This has led to a division into three partly regional EN I 

groups and one EN II group. 

 
 

Looking at a first plot of objects and variables together, we can see that the four different groups 

have been separated, at least partially. It can immediately be seen that there is a tendency for 

outliers in the lower left and right hand corners. However, before attending to these we should set a 

standard for the objects. There are seven sites that have less than ten counts of elements. We 

exclude these from the analysis as too uncertain. Then there are six sites with more than 100 counts 

of elements. To avoid that these by sheer number becomes too influential we weight them down to a 

sum of 100, in reality changing their counts to percentages. 

With the renewed analysis we find (below) that the change does not make much difference to 

the layout (except that the values on the second principal axis have been mirrored), but we are now 

certain that the sites are as comparable as we can make them. We could of course set the minimum 

sum higher, but that would quickly cut down the number of sites in the analysis and make it of little 

use.  

 

CA of the occurrence 

of ten different 

technical rim 

decoration elements in 

34 settlements. Objects 

and variables are not 

weighted. Combined 

plot of 1. and 2. 

principal axis. 
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We can now return to the problem with outliers.  

 

 
 

If we create a plot showing the inertia of objects and variables we can find the objects and variables 

that exert the greatest influence on the result. In the upper right hand corner there is one site 

(Bistoft) and one variable (Furrows) isolated from all other object and variables with very high 

inertia percentages. In the upper left hand corner there is a similar combination of an object 

(Bønnerup) and one variable (Broad Stab-and-drag) with high inertia percentages. An inspection of 

the input data reveals that 74% of the technical elements at Bistoft are Furrows, which by itself is a 

fairly common element on many sites. Further, 87% of all Broad stab-and-drag elements are found 

CA of the occurrence of ten 

different technical rim 

decoration elements in 27 

settlements. Objects with 

sums larger than 100 are 

weighted down to 100. 

Variables are not weighted. 

Combined plot of 1. and 2. 

principal axis. 

CA of the occurrence of ten 

different technical rim 

decoration elements in 27 

settlements. Objects with 

sums larger than 100 are 

weighted down to 100. 

Variables are not weighted. 

Combined plot of 1. and 2. 

principal axis. 

CA of the 

occurrence of ten 

different technical 

rim decoration 

elements in 27 

settlements. Objects 

with sums larger 

than 100 are 

weighted down to 

100. Variables are 

not weighted. 

Combined plot of 1. 

and 2. principal axis 

showing size of 

inertia. 
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at Bønnerup, a site that contains a wide variety of other elements. Clearly, the site of Bistoft, and the 

variable Broad stab-and-drag are extreme outliers in the analysis and they should be removed. 

There are other variables with an inertia that should be dampened. In the following, apart from 

removing the site of Bistoft and the variable Broad stab and drag, the variables, Whipped cord, 

Twisted cord, Ordinary stab-and-drag and Furrows have been weighted with 0.7, 0.2, 0.7 and 0.8 

respectively. This has been done experimentally to land their inertia on a not too high level 

compared to the other variables. 

 

 
 

The exclusion of a site and a variable, and the selective weighting of variables have created a 

somewhat clearer result with a better separation of the individual groups. However, there are clearly 

problems with some sites (the three at the bottom centre of the plot), and after removing sites with a 

sum of less than 10 there are hardly any Oxie group sites left. Thus we may conclude that although 

the technical elements used in rim decorations appear to be a strong indicator for the chronological 

and cultural division of Early Neolithic pottery it is not by itself a sufficient discriminator. 

 

Example of flint distribution in relation to Linear Band Ceramic houses 

The material for this example is adopted from de Grooth 1987. It consists of counts of various types 

of worked flint from rubbish pits associated with houses from the Linear Band Ceramic culture 

(LBK) site of Elsloo. The material was expected to be able to reveal different potential modes of 

production. Basically domestic mode of production on the one hand and Lineage mode of 

production and/or Loose mode of production (ad hoc specialisation) on the other hand. The first 

would result in a uniform distribution of leftovers from production in all houses. The latter would 

result in a bipartition of houses into production and consumption units. As the different modes of 

production are not mutually exclusive a clear patterning cannot be expected, and only by using 

multivariate methods can patterns be uncovered (de Grooth 1987: 38). 

A PCA was applied to the data, but no clear results were obtained, and none that related to the 

modes of production. In fact “rather unexpectedly, the only way to make sense of the two first 

P(rincipal)C(omponent)’s was to interpret them in chronological and technological terms. As time 

CA of the occurrence of 

ten different technical 

rim decoration elements 

in 27 settlements. Objects 

with sums larger than 

100 are weighted down to 

100. Variables have been 

individually weighted. 

Combined plot of 1. and 

2. principal axis showing 

size of inertia. 
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went on, fewer preparation pieces were needed to prepare cores that yielded a higher proportion of 

blades” (de Grooth 1987: 42). 

PCA is not the correct method to use on contingency data, however. CA can be expected to 

perform much better, which will be demonstrated in the following. The material consists of counts 

of 19 categories of worked flint from 72 house units. The sum of counts for both flint categories and 

house units vary considerably. For the former the maximum sum is 3081, while the minimum sum 

is 1. For the latter the maximum sum is 762 and the minimum sum is 5. It was decided to leave out 

houses with a sum less than 20 and flint categories with a sum less than 15 to reduce the likelihood 

of a random effect. This leaves us with 49 houses and 15 categories of worked flint. The houses can 

be dated within a six phase chronology based on pottery. For this example it is sufficient, however, 

to split them into a group of houses dating to the older LBK and a group of hoses dating to the 

younger LBK. The 15 categories of worked flint used can be divided into a group of categories 

indicating production and a group of categories indicating consumption. The former group consists 

of Blocks, Cores, Flakes, Rejuvenation pieces, Preparation Pieces, Hammer stones and Hammer 

stone fragments. The latter group consists of Blades, Side retouched blades, Sickle blades, End 

scrapers, Arrow heads, Borers, Side scrapers and Splintered pieces. 

 

 
 

The result of the analysis is clear and directly interpretable along the lines that de Grooth had 

envisaged. There is a tight group of consumption categories in the right part of the plot and a 

somewhat more dispersed group of production categories to the left and around the centre of the 

plot. This bipartition clearly indicate that different modes of production are indeed imbedded in the 

material. Only two assumed consumption categories break the pattern by lying to the left and 

bottom of the plot. Splintered pieces may not belong to the consumption category as I have 

assumed, and Side scrapers seems to be a tool that mostly belongs to the older LBK, and hence may 

be caught up in the chronological pattern. 

The houses have an even distribution with most of them lying around the production categories, 

and considerably fewer around the consumption categories. The really surprising fact is that all 

houses from the older LBK lies around the production categories, while the houses from the 

younger LBK are evenly distributed around both groups. The interpretation seems fairly clear. 

CA of the occurrence of 

15 categories of worked 
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During the older LBK the domestic mode of production prevailed, and if other modes existed they 

were not sufficiently developed to pattern the material. During the younger LBK other modes of 

production broke through (whether lineage mode or loose mode), and house holds are now either 

producers and consumers or primarily consumers.  

 

Example of female graves from the Germanic Iron Age on the isle of Bornholm 

The data for this example is adopted from Nielsen 1988, which was one of the very first studies 

showing the capabilities of CA for chronological studies, demonstrating how, in connection with 

perfect continuity in a set of data, the graphical presentation would form an arced hyperbolic layout. 

Here the analysis is merely presented with a few comments. 

 

 
 

The data consist of counts of various types of personal ornaments in female graves. As can be seen 

from the plot there is a high degree of continuity in the material, where the individual ornament 

types occurs in a fairly limited number of graves, and where each grave have a limited number of 

ornaments. Further, there are no breaks in the sequence leaving us with a perfect seriation that can 

be interpreted chronologically. The tendency for clustering along the hyperbolic layout may either 

indicate an uneven temporal occurrence of graves in the material, or it may be the result of an 

uneven temporal development in the type of ornaments used. 

Clearly, the layout can be described through a second degree polynomial. In the above plot 

separate trend lines for objects and variables have been added. In CAPCA this can easily be done in 

the plots, when objects and variables are shown without a classification. Just activate the series of 

object, right click and choose add trend line and make sure that the type is set to polynomial of 

second order. Then repeat the process with the variables. When adding the trend line you can also 

specify to have its equation shown as well as the squared value of Pearson’s correlation coefficient. 

For a good seriation you should expect this value to be very high. No rules can be given, but I 

would expect it always to be higher than 0.9. Further in a good seriation you should expect the two 

trend lines to be almost identical. 
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To most archaeologists a seriation is equivalent to an ordered matrix, where values are 

concentrated along the diagonal. Such a sorting can of course be done from the CA result. In 

CAPCA, if you have checked the input box Seriate data based on CA output, a sheet named 

Seriation output will be created containing a sorted matrix of the data analysed. The results mostly 

looks persuasive but remember, never judge a seriation from the sorted matrix! Use only the plots. 
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Gudhjem 1 1
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Bækkegård 132 1 1

Bækkegård 44 1 2 1 1

Bækkegård 59 1 2 1

Bækkegård 66 1 1 1

Lousgård 6 1 1 1

Lousgård 11 2 1

Lousgård 3 2 1

Nr.Sandegård 6 2 1

Bækkegård 143 1 1 1

St.Kannikegård 195 1 1

Bækkegård 3 1 1 1

Bækkegård 5 1 2 1

Bækkegård 77 1 1 2 1 1

Bækkegård 50 1 1 2

Bækkegård 76 1 1 1  
 

The sorting of objects and variables in CAPCA is based on the trend lines for objects and variables 

respectively. For each object and each variable, using the equations for the trend lines, their position 

on the lines is calculated using the shortest (orthogonal) distance as criteria. The sorting is done 

using the coordinates on the first principal axis of the projected points. These coordinates can be 

found along the margins of the sorted matrix in the sheet Seriation output. 

 

METRIC SCALING 

 

Measures of similarity and distance 

The development and use of similarity and distance coefficients took place in the biological and 

ecological sciences in the 1950’es and 60’es. A central publication was “Principles of Numerical 

Taxonomy” (Sokal & Sneath 1963), which also had an impact on archaeology through David 

Clarkes “Analytical Archaeology” (1968). 

The concept of similarity is one we all share, but it is certainly not a precise and well defined 

concept. In every day life we often state that something is similar or dissimilar, but if questioned as 

to why we will often find it difficult to give a precise answer. The problem is that we cannot really 

speak of similarity unless we also state in terms of what. Even when we intuitively speak of 

similarity between objects we do so based on abstractions from the objects of characteristics that we 

feel are important. We may not realise what these characteristics are, and if questioned we may be 
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at a loss to explain. Others may not find the same similarity because they focus on other 

characteristics. 

To use the concept of similarity in science we have to define what similarity is and how we 

measure it. It is agreed that a statement of similarity between objects is based on a predefined list of 

elements/traits/characters – whatever the name used – through which the comparison is made. It is 

obvious that similarity becomes a matter of the predefined list. In the heydays of positivism this 

indicated that if only we could set up a thorough list of elements we could reach an objective 

statement of similarity. This is obviously not so. Many different lists of elements can be set up 

reflecting current understanding and goals. Each will result in different statements of similarity. 

However, given a particular list of elements and given a particular way of measuring similarity 

based on this list we can get consistent and repeatable expressions of similarity between objects. 

A variety of measures of similarity have been suggested and used over the years. Most measures 

result in coefficients of similarity ranging between 1 and 0, the former for perfect agreement, the 

latter for no agreement whatever. The measure used in CAPCA is adopted from J.C. Gower (1971). 

This is a generally approved measure that elegantly combines elements from three types of 

variables. The three types separated are: dichotomous, qualitative and quantitative. A dichotomous 

variable holds one element which must be either absent or present for an object. A qualitative 

variable has two or more alternative elements. Only one element can be recorded for an object and 

the object must always display one of the alternatives. A quantitative variable has a set of numeric 

values with an inherit order. It may be measurements, counts or even numbers representing an 

ordinal scale. 

When comparing two objects across all their variables two “counters” are used called Scores 

and Validity. Whenever a valid comparison between two variables is made Validity is incremented 

with 1, while Scores is incremented with a value between 0 and 1 depending on the outcome of the 

comparison. 

For dichotomous variables Scores is incremented with 1 if both objects show presence and is 

not incremented if one object shows presence and the other shows absence. If both objects show 

absence the comparison is not seen as valid and neither Scores nor Validity are incremented. For 

qualitative variables Scores is incremented with 1 if both objects display the same element and is 

not incremented if they differ. For qualitative variables Scores is incremented with a value 

calculated as 1-|xi – xj|/r where xi and xj represent the values of the variable for the two objects and r 

denotes the total range of values in the variable. 

Gowers coefficient is the only coefficient supported in CAPCA if the input data consist of 

objects and variables as recorded. However, it is also possible to input matrices of coefficients 

directly, but then you have to compute the coefficients yourself in advance. These matrices of 

coefficients may contain either similarity coefficients or distance coefficients, the latter in principle 

being just a reciprocal expression of similarity.  

 

Example of distances between Central European capitals 

In connection with most roadmaps you will find a table of distances between cities. The following 

example was drawn from a standard road atlas of Europe. Ten capitals have been extracted from the 

table, all of them lying within mainland Central Europe. Thus you don’t have to cross the sea to go 

from on capital to another, and none of the capitals lies on peninsulas restricting the driving access. 
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Amsterdam 0 668 211 1411 908 383 501 855 1226 1152

Berlin 668 0 777 859 1079 766 1052 343 595 625

Brussel 211 777 0 1367 714 215 309 891 1335 1108

Budapest 1411 859 1367 0 1284 1190 1494 517 669 247

Genève 908 1079 714 1284 0 508 503 922 1559 1025

Luxembourg 383 766 215 1190 508 0 355 725 1287 930

Paris 501 1052 309 1494 503 355 0 1030 1611 1234

Praha 855 343 891 517 922 725 1030 0 614 283

Warszawa 1226 595 1335 669 1559 1287 1611 614 0 695

Wien 1152 625 1108 247 1025 930 1234 283 695 0  
 

The input matrix is a straight forward distance matrix with zero values on the diagonal and 

distances in km in the cells combining various capitals. 

 

 
 

The result of the metric scaling of the distance matrix is a fairly precise representation of the 

position of the capitals in relation to each other. You can reassure yourself of this from any map of 

Europe, but you have to do a little mental mirroring of the map. East has become west and vice 

versa. Obviously there is no way that the program can know what is left and right or up and down. 

It is simply a scaling presented in two dimensions from some distance measures. If you want to 

compare it to the real world, you have to do a bit of mirroring yourself, and perhaps even rotating. 

 

Example using measurement and rim decoration data on 66 early Neolithic pots 

This material is the same as was used in a PCA example above, but in addition to the measurements 

used, a recording of decoration elements is added by way of Gowers general coefficient of 

similarity. First, however, an analysis exclusively based on the measurement data is made to enable 

a comparison between PCA and MS. 

 

Distance matrix 

between 10 Central 
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Metric scaling of 

distance matrix 

between 10 Central 

European capitals. 

Note that the “map” is 

mirrored. 
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The measurements used are in the weighted version that brought the best results with the PCA. It 

can immediately be seen that the result of the MS is markedly inferior to the result from PCA. 

There is a tendency for a separation of type 1 on the one hand and type 2 and 3 on the other, but that 

is just about all. In the PCA we actually had a clear separation of type 0 and type 1 on the one hand 

and type 2 and type 3 on the other, and a partial separation of the two latter types, all fully in line 

with what we would expect archaeologically. Why things do not work out in MS is difficult to 

evaluate, not least because we totally loose the connection to the individual variables in the process 

of creating the similarity coefficients. In my opinion, however, a coefficient of similarity is too 

simple a way to express the relations between objects. 

The main reason to use MS is the possibility to combine continuous variables with categorical 

variables. Unfortunately, the pots in question are not highly decorated, in fact the majority have 

only a rim decoration, if any decoration at all. Further, the rim decoration is quite simple, displaying 

only horizontal lines or rows. Basically, we are limited to record 11 different technical elements 

used in the rim decoration. Technical elements, however, can be considered to be very decisive in 

the Early Neolithic pottery as one of the CA examples above shows. 

Metric scaling of 

66 Neolithic pots 

based on a 

comparison of 12 

measurements. 
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The MS of measurement and decoration data together is not satisfactory either. Clearly, there is an 

improvement in the separation of type 1 from the others, but there are no significant changes within 

the remaining material. The use of MS in this case is simply not satisfactory.  It remains to be seen 

whether this is a reflection of a general weakness in the approach compared to PCA/CA, or if there 

are situations, where better results can be obtained by MS than by combining your way with PCA 

and CA. Personally, I am rather sceptical. 
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